45 research outputs found

    Postcopulatory sexual selection and the evolution of shape complexity in the carnivoran baculum

    Get PDF
    The baculum is an enigmatic bone within the mammalian glans penis, and the driving forces behind its often bizarre shape have captivated evolutionary biologists for over a century. Hypotheses for the function of the baculum include aiding in intromission, stimulating females and assisting with prolonged mating. Previous attempts to test these hypotheses have focused on the gross size of the baculum and have failed to reach a consensus. We conducted three-dimensional imaging and apply a new method to quantify three-dimensional shape complexity in the carnivoran baculum. We show that socially monogamous species are evolving towards complex-shaped bacula, whereas group-living species are evolving towards simple bacula. Overall three-dimensional baculum shape complexity is not related to relative testes mass, but tip complexity is higher in induced ovulators and species engaging in prolonged copulation. Our study provides evidence of postcopulatory sexual selection pressures driving three-dimensional shape complexity in the carnivore baculum

    Body mass estimates of an exceptionally complete Stegosaurus (Ornithischia: Thyreophora): comparing volumetric and linear bivariate mass estimation methods

    Get PDF
    © 2015 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. The file attached is the published version of the article

    The evolutionary origin of avian facial bristles and the likely role of rictal bristles in feeding ecology

    Get PDF
    Facial bristles are one of the least described feather types and have not yet been systematically studied across phylogenetically diverse avian species. Consequently, little is known about their form, function and evolutionary history. Here we address this knowledge gap by characterising the evolution of facial bristles for the first time. We especially focus on rictal bristle presence and their associations with foraging behaviour, diet and habitat preferences in 1022 avian species, representing 91 families in 29 orders. Results reveal that upper rictal, lower rictal and interramal bristles were likely to be present in the most recent common ancestor of this avian phylogeny, whereas narial bristles were likely to be absent. Rictal bristle presence, length and shape varied both within and between avian orders, families and genera. Rictal bristles were gained or lost multiple times throughout evolution, which suggest that the different morphologies observed within species might not be homologous. Phylogenetic relatedness is also not likely to be the only driver of rictal bristle presence and morphology. Rictal bristle presence and length were associated with species-specific ecological traits, especially nocturnality. Our findings suggest that species foraging in low-light conditions are likely to have longer rictal bristles, and that rictal bristles are likely to have evolved in early birds

    A volumetric technique for fossil body mass estimation applied to Australopithecus afarensis

    Get PDF
    Fossil body mass estimation is a well established practice within the field of physical anthropology. Previous studies have relied upon traditional allometric approaches, in which the relationship between one/several skeletal dimensions and body mass in a range of modern taxa is used in a predictive capacity. The lack of relatively complete skeletons has thus far limited the potential application of alternative mass estimation techniques, such as volumetric reconstruction, to fossil hominins. Yet across vertebrate paleontology more broadly, novel volumetric approaches are resulting in predicted values for fossil body mass very different to those estimated by traditional allometry. Here we present a new digital reconstruction of Australopithecus afarensis (A.L. 288-1; ‘Lucy’) and a convex hull-based volumetric estimate of body mass. The technique relies upon identifying a predictable relationship between the ‘shrink-wrapped’ volume of the skeleton and known body mass in a range of modern taxa, and subsequent application to an articulated model of the fossil taxa of interest. Our calibration dataset comprises whole body computed tomography (CT) scans of 15 species of modern primate. The resulting predictive model is characterized by a high correlation coefficient (r2 = 0.988) and a percentage standard error of 20%, and performs well when applied to modern individuals of known body mass. Application of the convex hull technique to A. afarensis results in a relatively low body mass estimate of 20.4 kg (95% prediction interval 13.5–30.9 kg). A sensitivity analysis on the articulation of the chest region highlights the sensitivity of our approach to the reconstruction of the trunk, and the incomplete nature of the preserved ribcage may explain the low values for predicted body mass here. We suggest that the heaviest of previous estimates would require the thorax to be expanded to an unlikely extent, yet this can only be properly tested when more complete fossils are available

    More than one way of being a moa: differences in leg bone robustness map divergent evolutionary trajectories in Dinornithidae and Emeidae (Dinornithiformes).

    Get PDF
    The extinct moa of New Zealand included three families (Megalapterygidae; Dinornithidae; Emeidae) of flightless palaeognath bird, ranging in mass from 200 kg. They are perceived to have evolved extremely robust leg bones, yet current estimates of body mass have very wide confidence intervals. Without reliable estimators of mass, the extent to which dinornithid and emeid hindlimbs were more robust than modern species remains unclear. Using the convex hull volumetric-based method on CT-scanned skeletons, we estimate the mass of a female Dinornis robustus (Dinornithidae) at 196 kg (range 155-245 kg) and of a female Pachyornis australis (Emeidae) as 50 kg (range 33-68 kg). Finite element analysis of CT-scanned femora and tibiotarsi of two moa and six species of modern palaeognath showed that P. australis experienced the lowest values for stress under all loading conditions, confirming it to be highly robust. In contrast, stress values in the femur of D. robustus were similar to those of modern flightless birds, whereas the tibiotarsus experienced the highest level of stress of any palaeognath. We consider that these two families of Dinornithiformes diverged in their biomechanical responses to selection for robustness and mobility, and exaggerated hindlimb strength was not the only successful evolutionary pathway

    Muscle moment arm analyses applied to vertebrate paleontology: a case study using Stegosaurus stenops Marsh, 1887

    Get PDF
    The moment arm of a muscle defines its leverage around a given joint. In a clinical setting, the quantification of muscle moment arms is an important means of establishing the ‘healthy’ functioning of a muscle and in identifying and treating musculoskeletal abnormalities. Elsewhere in modern animal taxa, moment arm studies aim to illuminate adaptions of the musculoskeletal system towards particular locomotor or feeding behaviors. In the absence of kinematic data, paleontologists have likewise relied upon estimated muscle moment arms as a means of reconstructing musculoskeletal function and biomechanical performance in fossil species. With the application of ‘virtual paleontological’ techniques, it is possible to generate increasingly detailed musculoskeletal models of extinct taxa. However, the steps taken to derive such models of complex systems are seldom reported in detail. Here we present a case study for calculating three-dimensional muscle moment arms using Stegosaurus stenops Marsh, 1887 to highlight both the potential and the limitations of this approach in vertebrate paleontology. We find the technique to be mostly insensitive to choices in muscle modeling parameters (particularly relative to other sources of uncertainty in paleontological studies), although exceptions do exist. Of more concern is the current lack of consensus on what functional signals, if any, are contained within moment arm data derived from extant species. Until a correlation between muscle moment arm and function can be broadly identified across a range of modern taxa, the interpretation of moment arms calculated for extinct taxa should be approached with caution

    Alpha shapes: Determining 3D shape complexity across morphologically diverse structures

    Get PDF
    Background. Following recent advances in bioimaging, high-resolution 3D models of biological structures are now generated rapidly and at low-cost. To utilise this data to address evolutionary and ecological questions, an array of tools has been developed to conduct 3D shape analysis and quantify topographic complexity. Here we focus particularly on shape techniques applied to irregular-shaped objects lacking clear homologous landmarks, and propose the new ‘alpha-shapes’ method for quantifying 3D shape complexity. Methods. We apply alpha-shapes to quantify shape complexity in the mammalian baculum as an example of a morphologically disparate structure. Micro- computed-tomography (μCT) scans of bacula were conducted. Bacula were binarised and converted into point clouds. Following application of a scaling factor to account for absolute differences in size, a suite of alpha-shapes was fitted to each specimen. An alpha shape is a formed from a subcomplex of the Delaunay triangulation of a given set of points, and ranges in refinement from a very coarse mesh (approximating convex hulls) to a very fine fit. ‘Optimal’ alpha was defined as the degree of refinement necessary in order for alpha-shape volume to equal CT voxel volume, and was taken as a metric of overall shape ‘complexity’. Results Our results show that alpha-shapes can be used to quantify interspecific variation in shape ‘complexity’ within biological structures of disparate geometry. The ‘stepped’ nature of alpha curves is informative with regards to the contribution of specific morphological features to overall shape ‘complexity’. Alpha-shapes agrees with other measures of topographic complexity (dissection index, Dirichlet normal energy) in identifying ursid bacula as having low shape complexity. However, alpha-shapes estimates mustelid bacula as possessing the highest topographic complexity, contrasting with other shape metrics. 3D fractal dimension is found to be an inappropriate metric of complexity when applied to bacula. Conclusions. The alpha-shapes methodology can be used to calculate ‘optimal’ alpha refinement as a proxy for shape ‘complexity’ without identifying landmarks. The implementation of alpha-shapes is straightforward, and is automated to process large datasets quickly. Beyond genital shape, we consider the alpha-shapes technique to hold considerable promise for new applications across evolutionary, ecological and palaeoecological disciplines
    corecore